// SPDX-License-Identifier: MIT // // Copyright 2024 Advanced Micro Devices, Inc. #include "dcn401_clk_mgr_smu_msg.h" #include "clk_mgr_internal.h" #include "reg_helper.h" #include "dalsmc.h" #include "dcn401_smu14_driver_if.h" #define mmDAL_MSG_REG 0x1628A #define mmDAL_ARG_REG 0x16273 #define mmDAL_RESP_REG 0x16274 #define REG(reg_name) \ mm ## reg_name #include "logger_types.h" #define smu_print(str, ...) {DC_LOG_SMU(str, ##__VA_ARGS__); } /* temporary define */ #ifndef DALSMC_MSG_SubvpUclkFclk #define DALSMC_MSG_SubvpUclkFclk 0x1B #endif #ifndef DALSMC_MSG_GetNumUmcChannels #define DALSMC_MSG_GetNumUmcChannels 0x1C #endif /* * Function to be used instead of REG_WAIT macro because the wait ends when * the register is NOT EQUAL to zero, and because the translation in msg_if.h * won't work with REG_WAIT. */ static uint32_t dcn401_smu_wait_for_response(struct clk_mgr_internal *clk_mgr, unsigned int delay_us, unsigned int max_retries) { uint32_t reg = 0; do { reg = REG_READ(DAL_RESP_REG); if (reg) break; if (delay_us >= 1000) msleep(delay_us/1000); else if (delay_us > 0) udelay(delay_us); } while (max_retries--); return reg; } static bool dcn401_smu_send_msg_with_param(struct clk_mgr_internal *clk_mgr, uint32_t msg_id, uint32_t param_in, uint32_t *param_out) { /* Wait for response register to be ready */ dcn401_smu_wait_for_response(clk_mgr, 10, 200000); TRACE_SMU_MSG_ENTER(msg_id, param_in, clk_mgr->base.ctx); /* Clear response register */ REG_WRITE(DAL_RESP_REG, 0); /* Set the parameter register for the SMU message */ REG_WRITE(DAL_ARG_REG, param_in); /* Trigger the message transaction by writing the message ID */ REG_WRITE(DAL_MSG_REG, msg_id); /* Wait for response */ if (dcn401_smu_wait_for_response(clk_mgr, 10, 200000) == DALSMC_Result_OK) { if (param_out) *param_out = REG_READ(DAL_ARG_REG); TRACE_SMU_MSG_EXIT(true, param_out ? *param_out : 0, clk_mgr->base.ctx); return true; } TRACE_SMU_MSG_EXIT(false, 0, clk_mgr->base.ctx); return false; } /* * Use these functions to return back delay information so we can aggregate the total * delay when requesting hardmin clk * * dcn401_smu_wait_for_response_delay * dcn401_smu_send_msg_with_param_delay * */ static uint32_t dcn401_smu_wait_for_response_delay(struct clk_mgr_internal *clk_mgr, unsigned int delay_us, unsigned int max_retries, unsigned int *total_delay_us) { uint32_t reg = 0; *total_delay_us = 0; do { reg = REG_READ(DAL_RESP_REG); if (reg) break; if (delay_us >= 1000) msleep(delay_us/1000); else if (delay_us > 0) udelay(delay_us); *total_delay_us += delay_us; } while (max_retries--); return reg; } static bool dcn401_smu_send_msg_with_param_delay(struct clk_mgr_internal *clk_mgr, uint32_t msg_id, uint32_t param_in, uint32_t *param_out, unsigned int *total_delay_us) { unsigned int delay1_us, delay2_us; *total_delay_us = 0; /* Wait for response register to be ready */ dcn401_smu_wait_for_response_delay(clk_mgr, 10, 200000, &delay1_us); TRACE_SMU_MSG_ENTER(msg_id, param_in, clk_mgr->base.ctx); /* Clear response register */ REG_WRITE(DAL_RESP_REG, 0); /* Set the parameter register for the SMU message */ REG_WRITE(DAL_ARG_REG, param_in); /* Trigger the message transaction by writing the message ID */ REG_WRITE(DAL_MSG_REG, msg_id); /* Wait for response */ if (dcn401_smu_wait_for_response_delay(clk_mgr, 10, 200000, &delay2_us) == DALSMC_Result_OK) { if (param_out) *param_out = REG_READ(DAL_ARG_REG); *total_delay_us = delay1_us + delay2_us; TRACE_SMU_MSG_EXIT(true, param_out ? *param_out : 0, clk_mgr->base.ctx); return true; } *total_delay_us = delay1_us + 2000000; TRACE_SMU_MSG_EXIT(false, 0, clk_mgr->base.ctx); return false; } bool dcn401_smu_get_smu_version(struct clk_mgr_internal *clk_mgr, unsigned int *version) { smu_print("SMU Get SMU version\n"); if (dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_GetSmuVersion, 0, version)) { smu_print("SMU version: %d\n", *version); return true; } return false; } /* Message output should match SMU11_DRIVER_IF_VERSION in smu11_driver_if.h */ bool dcn401_smu_check_driver_if_version(struct clk_mgr_internal *clk_mgr) { uint32_t response = 0; smu_print("SMU Check driver if version\n"); if (dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_GetDriverIfVersion, 0, &response)) { smu_print("SMU driver if version: %d\n", response); if (response == SMU14_DRIVER_IF_VERSION) return true; } return false; } /* Message output should match DALSMC_VERSION in dalsmc.h */ bool dcn401_smu_check_msg_header_version(struct clk_mgr_internal *clk_mgr) { uint32_t response = 0; smu_print("SMU Check msg header version\n"); if (dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_GetMsgHeaderVersion, 0, &response)) { smu_print("SMU msg header version: %d\n", response); if (response == DALSMC_VERSION) return true; } return false; } void dcn401_smu_send_fclk_pstate_message(struct clk_mgr_internal *clk_mgr, bool support) { smu_print("FCLK P-state support value is : %d\n", support); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetFclkSwitchAllow, support, NULL); } void dcn401_smu_send_uclk_pstate_message(struct clk_mgr_internal *clk_mgr, bool support) { smu_print("UCLK P-state support value is : %d\n", support); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetUclkPstateAllow, support, NULL); } void dcn401_smu_send_cab_for_uclk_message(struct clk_mgr_internal *clk_mgr, unsigned int num_ways) { uint32_t param = (num_ways << 1) | (num_ways > 0); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetCabForUclkPstate, param, NULL); smu_print("Numways for SubVP : %d\n", num_ways); } void dcn401_smu_set_dram_addr_high(struct clk_mgr_internal *clk_mgr, uint32_t addr_high) { smu_print("SMU Set DRAM addr high: %d\n", addr_high); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetDalDramAddrHigh, addr_high, NULL); } void dcn401_smu_set_dram_addr_low(struct clk_mgr_internal *clk_mgr, uint32_t addr_low) { smu_print("SMU Set DRAM addr low: %d\n", addr_low); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetDalDramAddrLow, addr_low, NULL); } void dcn401_smu_transfer_wm_table_dram_2_smu(struct clk_mgr_internal *clk_mgr) { smu_print("SMU Transfer WM table DRAM 2 SMU\n"); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_TransferTableDram2Smu, TABLE_WATERMARKS, NULL); } void dcn401_smu_set_pme_workaround(struct clk_mgr_internal *clk_mgr) { smu_print("SMU Set PME workaround\n"); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_BacoAudioD3PME, 0, NULL); } static unsigned int dcn401_smu_get_hard_min_status(struct clk_mgr_internal *clk_mgr, bool *no_timeout, unsigned int *total_delay_us) { uint32_t response = 0; /* bits 23:16 for clock type, lower 16 bits for frequency in MHz */ uint32_t param = 0; *no_timeout = dcn401_smu_send_msg_with_param_delay(clk_mgr, DALSMC_MSG_ReturnHardMinStatus, param, &response, total_delay_us); smu_print("SMU Get hard min status: no_timeout %d delay %d us clk bits %x\n", *no_timeout, *total_delay_us, response); return response; } static bool dcn401_smu_wait_hard_min_status(struct clk_mgr_internal *clk_mgr, uint32_t ppclk) { const unsigned int max_delay_us = 1000000; unsigned int hardmin_status_mask = (1 << ppclk); unsigned int total_delay_us = 0; bool hardmin_done = false; while (!hardmin_done && total_delay_us < max_delay_us) { unsigned int hardmin_status; unsigned int read_total_delay_us; bool no_timeout; if (!hardmin_done && total_delay_us > 0) { /* hardmin not yet fulfilled, wait 500us and retry*/ udelay(500); total_delay_us += 500; smu_print("SMU Wait hard min status for %d us\n", total_delay_us); } hardmin_status = dcn401_smu_get_hard_min_status(clk_mgr, &no_timeout, &read_total_delay_us); total_delay_us += read_total_delay_us; hardmin_done = hardmin_status & hardmin_status_mask; } return hardmin_done; } /* Returns the actual frequency that was set in MHz, 0 on failure */ unsigned int dcn401_smu_set_hard_min_by_freq(struct clk_mgr_internal *clk_mgr, uint32_t clk, uint16_t freq_mhz) { uint32_t response = 0; bool hard_min_done = false; /* bits 23:16 for clock type, lower 16 bits for frequency in MHz */ uint32_t param = (clk << 16) | freq_mhz; smu_print("SMU Set hard min by freq: clk = %d, freq_mhz = %d MHz\n", clk, freq_mhz); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetHardMinByFreq, param, &response); /* wait until hardmin acknowledged */ hard_min_done = dcn401_smu_wait_hard_min_status(clk_mgr, clk); smu_print("SMU Frequency set = %d KHz hard_min_done %d\n", response, hard_min_done); return response; } void dcn401_smu_wait_for_dmub_ack_mclk(struct clk_mgr_internal *clk_mgr, bool enable) { smu_print("SMU to wait for DMCUB ack for MCLK : %d\n", enable); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetAlwaysWaitDmcubResp, enable ? 1 : 0, NULL); } void dcn401_smu_indicate_drr_status(struct clk_mgr_internal *clk_mgr, bool mod_drr_for_pstate) { smu_print("SMU Set indicate drr status = %d\n", mod_drr_for_pstate); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_IndicateDrrStatus, mod_drr_for_pstate ? 1 : 0, NULL); } bool dcn401_smu_set_idle_uclk_fclk_hardmin(struct clk_mgr_internal *clk_mgr, uint16_t uclk_freq_mhz, uint16_t fclk_freq_mhz) { uint32_t response = 0; bool success; /* 15:0 for uclk, 32:16 for fclk */ uint32_t param = (fclk_freq_mhz << 16) | uclk_freq_mhz; smu_print("SMU Set idle hardmin by freq: uclk_freq_mhz = %d MHz, fclk_freq_mhz = %d MHz\n", uclk_freq_mhz, fclk_freq_mhz); success = dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_IdleUclkFclk, param, &response); /* wait until hardmin acknowledged */ success &= dcn401_smu_wait_hard_min_status(clk_mgr, PPCLK_UCLK); smu_print("SMU hard_min_done %d\n", success); return success; } bool dcn401_smu_set_active_uclk_fclk_hardmin(struct clk_mgr_internal *clk_mgr, uint16_t uclk_freq_mhz, uint16_t fclk_freq_mhz) { uint32_t response = 0; bool success; /* 15:0 for uclk, 32:16 for fclk */ uint32_t param = (fclk_freq_mhz << 16) | uclk_freq_mhz; smu_print("SMU Set active hardmin by freq: uclk_freq_mhz = %d MHz, fclk_freq_mhz = %d MHz\n", uclk_freq_mhz, fclk_freq_mhz); success = dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_ActiveUclkFclk, param, &response); /* wait until hardmin acknowledged */ success &= dcn401_smu_wait_hard_min_status(clk_mgr, PPCLK_UCLK); smu_print("SMU hard_min_done %d\n", success); return success; } bool dcn401_smu_set_subvp_uclk_fclk_hardmin(struct clk_mgr_internal *clk_mgr, uint16_t uclk_freq_mhz, uint16_t fclk_freq_mhz) { uint32_t response = 0; bool success; /* 15:0 for uclk, 32:16 for fclk */ uint32_t param = (fclk_freq_mhz << 16) | uclk_freq_mhz; smu_print("SMU Set active hardmin by freq: uclk_freq_mhz = %d MHz, fclk_freq_mhz = %d MHz\n", uclk_freq_mhz, fclk_freq_mhz); success = dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SubvpUclkFclk, param, &response); return success; } void dcn401_smu_set_min_deep_sleep_dcef_clk(struct clk_mgr_internal *clk_mgr, uint32_t freq_mhz) { smu_print("SMU Set min deep sleep dcef clk: freq_mhz = %d MHz\n", freq_mhz); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_SetMinDeepSleepDcfclk, freq_mhz, NULL); } void dcn401_smu_set_num_of_displays(struct clk_mgr_internal *clk_mgr, uint32_t num_displays) { smu_print("SMU Set num of displays: num_displays = %d\n", num_displays); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_NumOfDisplays, num_displays, NULL); } unsigned int dcn401_smu_get_num_of_umc_channels(struct clk_mgr_internal *clk_mgr) { unsigned int response = 0; dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_GetNumUmcChannels, 0, &response); smu_print("SMU Get Num UMC Channels: num_umc_channels = %d\n", response); return response; } /* * Frequency in MHz returned in lower 16 bits for valid DPM level * * Call with dpm_level = 0xFF to query features, return value will be: * Bits 7:0 - number of DPM levels * Bit 28 - 1 = auto DPM on * Bit 29 - 1 = sweep DPM on * Bit 30 - 1 = forced DPM on * Bit 31 - 0 = discrete, 1 = fine-grained * * With fine-grained DPM, only min and max frequencies will be reported * * Returns 0 on failure */ unsigned int dcn401_smu_get_dpm_freq_by_index(struct clk_mgr_internal *clk_mgr, uint32_t clk, uint8_t dpm_level) { uint32_t response = 0; /* bits 23:16 for clock type, lower 8 bits for DPM level */ uint32_t param = (clk << 16) | dpm_level; smu_print("SMU Get dpm freq by index: clk = %d, dpm_level = %d\n", clk, dpm_level); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_GetDpmFreqByIndex, param, &response); smu_print("SMU dpm freq: %d MHz\n", response); return response; } /* Returns the max DPM frequency in DC mode in MHz, 0 on failure */ unsigned int dcn401_smu_get_dc_mode_max_dpm_freq(struct clk_mgr_internal *clk_mgr, uint32_t clk) { uint32_t response = 0; /* bits 23:16 for clock type */ uint32_t param = clk << 16; smu_print("SMU Get DC mode max DPM freq: clk = %d\n", clk); dcn401_smu_send_msg_with_param(clk_mgr, DALSMC_MSG_GetDcModeMaxDpmFreq, param, &response); smu_print("SMU DC mode max DMP freq: %d MHz\n", response); return response; }